智能超構(gòu)透鏡分光鏡基于超構(gòu)透鏡的超分辨成像和光場(chǎng)調(diào)控能力,與分光技術(shù)相結(jié)合,實(shí)現(xiàn)對(duì)光信號(hào)的高精度分光和成像。在生物醫(yī)學(xué)顯微成像領(lǐng)域,通過(guò)設(shè)計(jì)超構(gòu)透鏡的亞波長(zhǎng)結(jié)構(gòu)單元,突破衍射極限,實(shí)現(xiàn) 20nm 的超高分辨率成像。利用分光鏡將不同熒光標(biāo)記的生物樣本發(fā)出的光信號(hào)準(zhǔn)確分離,配合單分子定位技術(shù),可清晰觀察細(xì)胞內(nèi)部的微觀結(jié)構(gòu)和生物分子的分布。在活細(xì)胞成像實(shí)驗(yàn)中,對(duì)線粒體、內(nèi)質(zhì)網(wǎng)等細(xì)胞器的動(dòng)態(tài)變化進(jìn)行實(shí)時(shí)監(jiān)測(cè),為細(xì)胞生物學(xué)研究提供重要工具。在半導(dǎo)體制造的光刻技術(shù)中,用于對(duì)光刻光源(如 EUV 光源)的分光和聚焦,通過(guò)優(yōu)化超構(gòu)透鏡的相位分布,將光刻分辨率提升至 10nm 以下,推動(dòng)半導(dǎo)體芯片向更小制程(如 3nm、2nm)發(fā)展,對(duì)微電子產(chǎn)業(yè)的技術(shù)進(jìn)步具有重要意義。?分光鏡助力光學(xué)成像,分束清晰,成像質(zhì)量大提升,超贊!合肥超疏水分光鏡規(guī)格
微納衛(wèi)星星座特地的分光鏡組針對(duì)衛(wèi)星星座協(xié)同觀測(cè)需求設(shè)計(jì),采用輕量化、模塊化結(jié)構(gòu),單鏡重量只 20g,體積為 2×2×1cm3 。其分光精度在可見光至短波紅外波段(400 - 2500nm)達(dá) ±0.8nm,光譜分辨率達(dá) 3nm 。通過(guò)多顆衛(wèi)星上的分光鏡組協(xié)同工作,采用分布式孔徑合成技術(shù),可獲取分辨率達(dá) 0.3 米的高光譜圖像,在土地利用監(jiān)測(cè)中,能夠區(qū)分不同農(nóng)作物品種;在海洋監(jiān)測(cè)中,可準(zhǔn)確測(cè)量葉綠素濃度與海水溫度分布 。該分光鏡組支持星間數(shù)據(jù)交互與同步控制,數(shù)據(jù)傳輸速率達(dá) 10Gbps,確保星座觀測(cè)數(shù)據(jù)的實(shí)時(shí)處理與共享,是微納衛(wèi)星星座實(shí)現(xiàn)高精度、廣覆蓋觀測(cè)的主要光學(xué)組件,推動(dòng)航天遙感進(jìn)入星座時(shí)代。?合肥單面分光鏡參數(shù)分光鏡,品質(zhì)好保障,分光效果在光學(xué)領(lǐng)域超能打!
由智能超構(gòu)透鏡與分光鏡集成的先進(jìn)光學(xué)系統(tǒng),融合了超構(gòu)透鏡的超分辨成像能力與分光鏡的準(zhǔn)確分光功能。超構(gòu)透鏡通過(guò)對(duì)光的波前進(jìn)行準(zhǔn)確調(diào)控,突破傳統(tǒng)光學(xué)衍射極限,實(shí)現(xiàn)納米級(jí)分辨率的成像效果,可清晰觀測(cè)到細(xì)胞內(nèi)部的細(xì)胞器結(jié)構(gòu)、納米材料的微觀形貌等微小目標(biāo);分光鏡則能夠?qū)⒉煌ㄩL(zhǎng)的光信號(hào)準(zhǔn)確分離,為多光譜成像、光譜分析等應(yīng)用提供基礎(chǔ)。在生物醫(yī)學(xué)顯微成像中,可實(shí)現(xiàn)對(duì)生物樣本的高分辨率、多光譜成像,幫助科研人員深入研究生物分子的功能與相互作用機(jī)制;在半導(dǎo)體制造領(lǐng)域,用于光刻技術(shù)中的光源分光與聚焦,可將光刻分辨率提升至 5nm 以下,助力半導(dǎo)體芯片制造向更小制程邁進(jìn)。該智能超構(gòu)透鏡分光鏡系統(tǒng)憑借其很不錯(cuò)的光學(xué)性能,成為推動(dòng)生物醫(yī)學(xué)、半導(dǎo)體等領(lǐng)域技術(shù)進(jìn)步的關(guān)鍵主要裝備。?
融合光聲光譜技術(shù)的分光鏡,通過(guò)將光信號(hào)轉(zhuǎn)化為聲信號(hào)實(shí)現(xiàn)痕量物質(zhì)檢測(cè)。當(dāng)特定波長(zhǎng)的光照射樣品時(shí),樣品吸收光能產(chǎn)生熱膨脹,進(jìn)而激發(fā)聲波。分光鏡內(nèi)置的高靈敏度聲傳感器與精密分光模塊協(xié)同工作,能夠?qū)⒐馕债a(chǎn)生的微弱聲信號(hào)轉(zhuǎn)化為可分析的光譜數(shù)據(jù)。在環(huán)境監(jiān)測(cè)中,對(duì)空氣中揮發(fā)性有機(jī)化合物(VOCs)的檢測(cè)限低至 0.01ppb,可準(zhǔn)確識(shí)別苯、甲醛等有害氣體,響應(yīng)時(shí)間小于 5 秒;在食品安全檢測(cè)領(lǐng)域,可檢測(cè)食品中殘留的農(nóng)藥、獸藥等污染物,對(duì)常見農(nóng)藥如有機(jī)磷的檢測(cè)精度達(dá) 0.1μg/kg 。其獨(dú)特的光聲轉(zhuǎn)換檢測(cè)機(jī)制,克服了傳統(tǒng)光譜檢測(cè)中背景噪聲干擾的難題,檢測(cè)靈敏度比常規(guī)光譜技術(shù)提升 3 - 5 個(gè)數(shù)量級(jí),為痕量物質(zhì)分析提供了性的解決方案,在環(huán)境、食品、醫(yī)療等多領(lǐng)域具有不可替代的應(yīng)用價(jià)值。?選分光鏡看這里,高性價(jià)比、分光準(zhǔn)確,還等什么?
智能形狀記憶聚合物分光鏡采用形狀記憶聚合物材料,通過(guò)溫度、電場(chǎng)等外界刺激實(shí)現(xiàn)形狀和光學(xué)性能的可逆調(diào)控。該聚合物材料采用雙網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì),形狀記憶回復(fù)率達(dá)到 99%。在航空航天展開式光學(xué)系統(tǒng)中,發(fā)射時(shí)處于折疊狀態(tài)(體積壓縮比達(dá) 1:15),進(jìn)入太空后受熱(70℃)觸發(fā)形狀記憶效應(yīng),在 8 秒內(nèi)恢復(fù)至工作形狀,同時(shí)材料的折射率變化范圍達(dá)到 0.08 - 0.12,可實(shí)現(xiàn)分光比的動(dòng)態(tài)調(diào)節(jié)。在某低軌衛(wèi)星項(xiàng)目中,經(jīng)過(guò) 800 次從 - 50℃至 90℃的熱循環(huán)測(cè)試后,分光精度仍保持在 ±0.3% 以內(nèi),滿足長(zhǎng)期空間觀測(cè)需求。在醫(yī)療微創(chuàng)設(shè)備中,作為可變形的光學(xué)元件,通過(guò)外部磁場(chǎng)控制(磁場(chǎng)強(qiáng)度 0 - 150mT),很小彎曲半徑可達(dá) 1.5mm,能夠靈活適應(yīng)血管、消化道等復(fù)雜人體內(nèi)部結(jié)構(gòu)。在血管內(nèi)光學(xué)相干斷層成像(OCT)應(yīng)用中,可實(shí)時(shí)調(diào)整視角,獲取血管壁的高分辨率圖像(軸向分辨率 8μm,橫向分辨率 15μm),為心血管疾病的準(zhǔn)確診斷和介入療愈提供清晰的可視化依據(jù),已在臨床手術(shù)中成功應(yīng)用數(shù)百例。?專業(yè)分光鏡,適配多種光學(xué)場(chǎng)景,輕松解決光線分配難題!合肥單面分光鏡參數(shù)
光學(xué)項(xiàng)目用分光鏡,分束高效,推動(dòng)研發(fā)前行!合肥超疏水分光鏡規(guī)格
采用微納光纖與分光鏡集成技術(shù)的產(chǎn)品,通過(guò)微納光纖的倏逝場(chǎng)效應(yīng)實(shí)現(xiàn)光的高效耦合與分光。在光纖傳感網(wǎng)絡(luò)中,該分光鏡可將光信號(hào)以 95% 以上的耦合效率準(zhǔn)確分配至不同傳感節(jié)點(diǎn),利用微納光纖對(duì)周圍環(huán)境的高靈敏度響應(yīng)(折射率靈敏度達(dá) 10^6 RIU^-1),實(shí)現(xiàn)對(duì)溫度(精度 ±0.01℃)、濕度(精度 ±1% RH)、折射率等參數(shù)的分布式監(jiān)測(cè)。在某跨海大橋健康監(jiān)測(cè)項(xiàng)目中,部署 100 個(gè)傳感節(jié)點(diǎn),可實(shí)時(shí)監(jiān)測(cè)橋梁結(jié)構(gòu)的應(yīng)變變化,檢測(cè)精度達(dá) 1με,有效保障橋梁安全。在光通信領(lǐng)域,用于構(gòu)建高密度、低損耗的光分路器,插入損耗低于 0.5dB,分光均勻性優(yōu)于 ±0.3dB,可支持 1×128 路光信號(hào)分路,提升光網(wǎng)絡(luò)的集成度和傳輸效率,是 5G 前傳、數(shù)據(jù)中心互聯(lián)等下一代光通信系統(tǒng)的關(guān)鍵基礎(chǔ)器件。?合肥超疏水分光鏡規(guī)格